Yep - that happy time again. I got some new parts in and decided it was time to rebuild one of my water cooled machines. And, since I was gonna dig into one, I figured it was a good time to do check ups on the others.
First up was my wife's system. Its a P4 with a 533Mhz FSB, rock stable and the first machine I ever water cooled.
.JPG)
Doesn't the water look nasty? This is what happens when you let the water get too low - it cooks. A quick top off with distilled water fixed it up fine. It needs topping every three months or so. If you look really close at the pump, you'll see a white stain - this is a bit of leakage, caused by overheating. Note that at no time did the machine ever fail: like I said, rock solid.
.JPG)
After the refill, I ran the system for awhile and then used my handy-dandy Raytek infrared thermometer to check the processor block temperature. Look closely at the processor water block, you'll see a little red dot beside the word X-Flow, which marks the spot where the thermometer is reading the temperature. 101.5F is a good operating temp.
Next up is the development workstation, the machine with three monitors attached.
.JPG)
This machine, like the last, has a nice, tidy water cooling rig. The video card in question is a Matrox Parhelia. Notice there are three SATA cables? Two for my RAID 1 drive array and one for my Plextor PX-716SA SATA DVD-RW! This machine was a little low on water, not as bad as the other, but still needed to be topped up.
The gaming system had been running for awhile with air cooling while I awaited the arrival of several parts: a water cooling block for the Athlon 64, as well as new nVidia 6800 Ultra video cards and their cooling blocks. Everything showed up during the week, this was my first chance to put it all together.
I had to strip the motherboard out of the machine to replace fans with water blocks - both the processor and Northbridge chip had mounts that had to be accessed from the back of the mother board.
.JPG)
Here's a look at the motherboard with fans installed. That little Northbridge fan is particularily squealy noisy. On the right is the little Northbridge cooling block (which I had stashed away) plus the new Socket 939 water cooling block and mount.
.JPG)
Here's a look with the fans stripped off and the processor and Northbridge cleaned and ready for water block mounting.
The processor mounted up with no problems at all - screw in the new support frame, put a fresh coat of thermal paste on the chip, polish up the block, place it on top of the chip and snap the locks in place. Alas, the Northbridge chip wasn't so easy.
The first problem was the alignment on the mounting holes. The water block sits right between the two video cards, so the hose connectors have to face directly toward the front of the motherboard. The way the water block went together, there was no way to mount it that way. I had to disassemble the block to flip the mounting plate over.
.JPG)
In the shot you can see the bits of the water block, from the clamping nuts, to the actual hose connectors, the block itself and the mounting bracket. I didn't pull the copper base out of the block, there was no reason to (except to show you), and I risked damaging a water seal.
After flipping the mounting bracket, I discovered that the mounting posts that crappy little fan used were too short for the water block. Off to Home Depot for some nylon nuts and bolts. A quick rub-down with thermal paste, a bit of fiddling and the Northbridge block got mounted.
.JPG)
You can see the hose connectors are facing forward, if not exactly square to the front of the motherboard. I was willing to favor the first video card, since it wasn't quite as close to the Northbridge water block. Notice also in this shot the EIGHT SATA connectors on this ASUS A8N-SLI Deluxe motherboard. Of which I'm using only one.
With the motherboard square away it was time to put my sights on retrofitting the video cards, a pair of ASUS Extreme N6800 Ultras.
.JPG)
This is the card, still fully intact, with the Innovatek water block sitting beside it, along with back plate and mounting hardware. Notice on the water block there's the center plate for cooling the GPU, four contact points for RAM and the left-most edge screws down over the voltage regulators. All those holes in the block get filled with various kinds of screws.
.JPG)
The video card stripped, ready for cleaning and water block mounting. Note the four screws from the GPU block, five screws from the RAM block, three screws for the fan and two plastic posts for the voltage regulators. Did I mention this video card is much, much lighter with all that crap removed?
.JPG)
After cleaning the chips off, applying new thermal paste and assembling all the bits very carefully, you can see the back plate with its four screws, the five spring loaded screws for the RAM mounts and two screws holding down the block on the voltage regulator. The video card is all heavy again.
.JPG)
Did I mention there was two of them? SLI video, doncha know.
With all the water block appropriately installed, it was time to reassemble the machine.
.JPG)
This is the assembled version. The blue cables are power cords, the video cards take two molex connectors each, plus there's another molex plugged into the motherboard, in addition to its normal main and secondary power plugs. The red/black wires are temperature sensors (four), black/red/yellow are fan connectors, of which there is two - one for the radiator fan, the other is plugged into a water speed meter.
All those sensors and fans are connected to a Matrix Orbital display, which is wired to the system via USB, which is the silver braided cable (you have to look real close for that one). Oh, and the red braid cable running over the top is the single SATA drive.
The water plumbing is as follows:
- Radiator
- Reservoir
- Pump
- CPU
- Video Card 1
- Video Card 2
- Northbridge
- Hard drive
- Water meter
- Back to radiator
One temperature sensor is inside the case, the others are in the water loop, between the pump and CPU, Northbridge and hard drive, meter and radiator.
The controller is set up to vary the radiator fan speed automatically based on water temperature. While I'm still playing with the tuning, right now its set to keep the system at 45C (113F). At 44C or below it'll slow the fan down to 25% of maximum speed. Above 46C it'll increase the speed of the fan to 100% to bring the temperature down.
And if you're wondering why I'm posting this on a Monday... well, it took longer than planned to get everything finished. As usual.